2,007 research outputs found

    Flexible Authentication in Vehicular Ad hoc Networks

    Full text link
    A Vehicular Ad-Hoc Network (VANET) is a form of Mobile ad-hoc network, to provide communications among nearby vehicles and between vehicles and nearby fixed roadside equipment. The key operation in VANETs is the broadcast of messages. Consequently, the vehicles need to make sure that the information has been sent by an authentic node in the network. VANETs present unique challenges such as high node mobility, real-time constraints, scalability, gradual deployment and privacy. No existent technique addresses all these requirements. In particular, both inter-vehicle and vehicle-to-roadside wireless communications present different characteristics that should be taken into account when defining node authentication services. That is exactly what is done in this paper, where the features of inter-vehicle and vehicle-to-roadside communications are analyzed to propose differentiated services for node authentication, according to privacy and efficiency needs

    New upper bounds on the linear complexity

    Get PDF
    AbstractIn this work, the general upper bound on the linear complexity given by Key is improved for certain families of nonlinear filter functions. Also, a new class of cyclotomic cosets whose degeneration is relatively easy to prove in several conditions is introduced and analysed

    Linear solutions for cryptographic nonlinear sequence generators

    Full text link
    This letter shows that linear Cellular Automata based on rules 90/150 generate all the solutions of linear difference equations with binary constant coefficients. Some of these solutions are pseudo-random noise sequences with application in cryptography: the sequences generated by the class of shrinking generators. Consequently, this contribution show that shrinking generators do not provide enough guarantees to be used for encryption purposes. Furthermore, the linearization is achieved through a simple algorithm about which a full description is provided

    Global Linear Complexity Analysis of Filter Keystream Generators

    Full text link
    An efficient algorithm for computing lower bounds on the global linear complexity of nonlinearly filtered PN-sequences is presented. The technique here developed is based exclusively on the realization of bit wise logic operations, which makes it appropriate for both software simulation and hardware implementation. The present algorithm can be applied to any arbitrary nonlinear function with a unique term of maximum order. Thus, the extent of its application for different types of filter generators is quite broad. Furthermore, emphasis is on the large lower bounds obtained that confirm the exponential growth of the global linear complexity for the class of nonlinearly filtered sequences

    A Simple Attack on Some Clock-Controlled Generators

    Get PDF
    We present a new approach to edit distance attacks on certain clock-controlled generators, which applies basic concepts of Graph Theory to simplify the search trees of the original attacks in such a way that only the most promising branches are analyzed. In particular, the proposed improvement is based on cut sets defined on some graphs so that certain shortest paths provide the edit distances. The strongest aspects of the proposal are that the obtained results from the attack are absolutely deterministic, and that many inconsistent initial states of the target registers are recognized beforehand and avoided during search

    Analysis of the generalized self-shrinking generator

    Get PDF
    AbstractThis work shows that the output sequences of a well-known cryptographic generator, the so-called generalized self-shrinking generator, are particular solutions of homogeneous linear difference equations with binary coefficients. In particular, all those generated sequences are just linear combinations of primary sequences weighted by binary values. Furthermore, the complete class of solutions of these difference equations includes other balanced sequences with the same period and even greater linear complexity than that of the generalized self-shrinking sequences. Cryptographic parameters of all above mentioned sequences are here analyzed in terms of linear equation solutions. In addition, this work describes an efficient algorithm to synthesize the component primary sequences as well as to compute the linear complexity and period of any generalized self-shrinking sequence
    corecore